Blocking the EP3 receptor for PGE2 with DG-041 decreases thrombosis without impairing haemostatic competence.

نویسندگان

  • Peggy Tilly
  • Anne-Laure Charles
  • Sophie Ludwig
  • Farid Slimani
  • Sabrina Gross
  • Olivier Meilhac
  • Bernard Geny
  • Kari Stefansson
  • Mark E Gurney
  • Jean-Etienne Fabre
چکیده

AIMS Haemostasis interrupts bleeding from disrupted blood vessels by activating platelet aggregation and coagulation. A similar mechanism termed thrombosis generates obstructive thrombi inside diseased arteries. As a consequence of this similarity, current anti-thrombotic agents increase the risk of bleeding. Atherosclerotic plaques produce significant amounts of prostaglandin E2 (PGE2), which activates its receptor EP3 on platelets and aggravates atherothrombosis. We investigated whether blocking EP3 could dissociate atherothrombosis from haemostasis. METHODS AND RESULTS Inhibiting in vivo the receptor EP3 for PGE2 with the blocking agent DG-041 reduced murine thrombosis triggered by local delivery of arachidonic acid or ferric chloride on healthy arteries. Importantly, it also reduced thrombosis triggered by scratching murine atherosclerotic plaques. PGE2 was not produced at the bleeding site after tail clipping. Consistently, blocking EP3 did not alter murine tail, liver, or cerebral haemostasis. Furthermore, blocking EP3 reduced murine pulmonary embolism and intensified platelet inhibition by clopidogrel leaving tail bleeding times unchanged. Human atherosclerotic plaques produced PGE2, which facilitated platelet aggregation in human blood and rescued the function of P2Y12-blocked platelets. Finally, in healthy patients, DG-041 reduced platelet aggregation, but did not significantly alter the cutaneous bleeding time at doses up to eight times the dose that inhibited the facilitating effect of PGE2 on platelets. CONCLUSION In mice, blocking EP3 inhibited atherothrombosis without affecting haemostasis and intensified efficiency of conventional anti-platelet treatment without aggravating the bleeding risk. In patients, blocking EP3 should improve the prevention of cardiovascular diseases, which is currently limited by the risk of bleeding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibiting thrombosis without causing bleeding: can EP3 blockers fulfil the dream?

Pharmacologists designing and clinicians dealing with antithrombotic drugs have always faced the problem that preventing thrombosis—by inhibiting one or more of the haemostatic pathways—always entails increased riskof bleeding. This paradigm has been over and over confirmed with the newer antithrombotic drugs, either inhibiting platelet function—such as prasugrel, ticagrelor, or cangrelor—or in...

متن کامل

Vascular wall–produced prostaglandin E2 exacerbates arterial thrombosis and atherothrombosis through platelet EP3 receptors

Prostanoids, bioactive lipids derived from arachidonic acid (AA), are important for vascular homeostasis. Among them, prostaglandin E2 (PGE2) enhances aggregation of platelets submaximally stimulated in vitro. This results from activation of EP3, one of the four PGE2 receptors, which decreases the threshold at which agonists activate platelets to aggregate. Although PGE2 altered venous thrombos...

متن کامل

Inactivation of the E-prostanoid 3 receptor attenuates the angiotensin II pressor response via decreasing arterial contractility.

OBJECTIVE The present studies aimed at elucidating the role of prostaglandin E(2) receptor subtype 3 (E-prostanoid [EP] 3) in regulating blood pressure. METHODS AND RESULTS Mice bearing a genetic disruption of the EP3 gene (EP(3)(-/-)) exhibited reduced baseline mean arterial pressure monitored by both tail-cuff and carotid arterial catheterization. The pressor responses induced by EP3 agonis...

متن کامل

Opposing effects of prostaglandin E2 receptors EP3 and EP4 on mouse and human β-cell survival and proliferation

OBJECTIVE Hyperglycemia and systemic inflammation, hallmarks of Type 2 Diabetes (T2D), can induce the production of the inflammatory signaling molecule Prostaglandin E2 (PGE2) in islets. The effects of PGE2 are mediated by its four receptors, E-Prostanoid Receptors 1-4 (EP1-4). EP3 and EP4 play opposing roles in many cell types due to signaling through different G proteins, Gi and GS, respectiv...

متن کامل

An excitatory role for peripheral EP3 receptors in bladder afferent function.

The excitatory roles of EP3 receptors at the peripheral afferent nerve innervating the rat urinary bladder have been evaluated by using the selective EP3 antagonist (2E)-3-[1-[(2,4-dichlorophenyl)methyl]-5-fluoro-3-methyl-1H-indol-7-yl]-N-[(4,5-dichloro-2-thienyl)sulfonyl]-2-propenamide (DG-041). The bladder rhythmic contraction model and a bladder pain model measuring the visceromotor reflex (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 101 3  شماره 

صفحات  -

تاریخ انتشار 2014